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Screening without a “Gold Standard”: The Hui-Walter Paradigm Revisited

Wesley O. Johnson,1 Joseph L. Gastwirth,2 and Larry M. Pearson3

The authors consider screening populations with two screening tests but where a definitive “gold standard” is
not readily available. They discuss a recent article in which a Bayesian approach to this problem is developed
based on data that are sampled from a single population. It was subsequently pointed out that such inferences
will not necessarily be accurate in the sense that standard errors for parameters may not decrease as n
increases. This problem will generally occur when the data are insufficient to estimate all of the parameters as
is the case when screening a single population with two tests. If both tests are applied to units sampled from
two populations, however, this particular difficulty disappears. In this article the authors further examine this
issue and develop an approach based on sampling two populations that yields increasingly accurate inferences
as the sample size increases. Am J Epidemiol 2001;153:921–4.
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Consider the problem of estimating the prevalence of a
disease and the accuracies of two screening tests when no
“gold standard” is readily available. The two screening tests
will be assumed to be conditionally independent as in
Joseph et al. (1) and Hui and Walter (2). The data consist of
a 2 × 2 table of counts, indicating the number of individuals
out of a sample of size n that test ��, �–, –�, or – – on the
two tests (table 1). The statistical difficulty here is that there
are only three independent cells in the table of data (the four
cell counts must add to n) for estimating five parameters
(the prevalence, the two sensitivities, and the two specifici-
ties). In statistical jargon, the problem lacks identifiability as
discussed by Neath and Samaniego (3).

Andersen (4) essentially makes this point in his criticism
of the Bayesian approach of Joseph et al. (1). The problem
is that, even with a specific prior distribution on the five
parameters of interest, posterior distributions need not
become concentrated around the true values of the parame-
ters as n increases. Thus, in spite of the fact that the proba-
bilities of the four categories (��, �–, –�, ––) will be esti-
mated precisely with sufficiently large n, there is no such
guarantee for the parameters of interest. Gastwirth et al. (5)
and Johnson and Gastwirth (6) note that this occurs in the
analysis of single-test screening data.

In the section, Two Tests, One Population, we demonstrate
that, even with large n, low prevalence, and high accuracy,

the marginal posteriors for the two sensitivities will be
approximately the same as their prior distributions; that is,
the data do not provide extra information about these param-
eters. If we include a second population with a different
prevalence, all of the parameters are identifiable provided
the tests are presumed independent, conditional on the true
disease state (2). The Bayesian analysis of this procedure is
given in the section, An Alternative Design using Two Tests
and Two Populations, and an illustration is presented using
the Strongyloides infection data that were analyzed by
Joseph et al. (1). These data are augmented with data from a
second population.

BACKGROUND MATERIAL

Let T1 and T2 denote the two screening tests that can be
applied to a sample of n individuals from a population, and
let D denote the characteristic of interest and its
absence. The data are summarized by a 2 × 2 table of
counts, where the left margin corresponds to T1 and the top
margin to T2 and where the first row and column corre-
spond to a � and the second to a – on the respective tests.
Let xij denote the count for row i and column j. A schematic
of the data is given in table 1.

The prevalence, sensitivities, and specificities are defined
as

The conditional independence of T1 and T2 implies that
and so on.

Joseph et al. (1) developed a Bayesian approach, which
assumes that prior uncertainty for these parameters can be
represented by independent beta prior distributions, that is,
p � Beta1ap, bp2,   ηi � Beta1aηi

, bηi
2,    θi � Beta1aθi

, bθi
2.

pr1�� 0D2 � η1η2, pr1�� 0D2 � θ111 � θ22

p � pr1D2,    ηi � pr 1� 0D, Ti2,     θi � pr 1� 0D, Ti2.

D
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Then the joint posterior distribution of the parameters can be
numerically approximated by using the Gibbs sampler dis-
cussed by Gelfand and Smith (7) and Tanner (8).

TWO TESTS, ONE POPULATION

In this section, we review the lack of identifiability that
occurs when the two tests are applied to any single popula-
tion. When p is very small and both tests are quite accurate,
that is, (η1, η2, θ1, θ2) near one, the technique developed by
Gastwirth et al. (5) and Johnson and Gastwirth (6) yields the
following approximate likelihood:

(see the Appendix for details). Notice that the parameters η1,
η2 do not appear in expression 1, indicating that the data
contain no information about them. As a result, the posterior
information for the two sensitivities will be approximately
the same as the prior information.

To give a specific illustration, we generated the data (x11 �
x12 � x21 � 2, x22 � 194) with n � 200 by fixing (p, η1, η2,
θ1, θ2) � (0.01, 0.9, 0.9, 0.99, 0.99) and then finding the
table of integers that most closely matched the resulting
expected values. For example, E(x11) � n{pη1η2 � (1 – p)
(1 – θ1)(1 – θ2)} � 1.64, E(x12) � E(x21) � 2.14, and E(x22) �
194.1. We assume a prior for the parameters with ap � 1, 
bp � 9, and aη1 � aη2 � aθ1 � aθ2 � 9, and bη1 � bη2 �
bθ1 � bθ2 � 1.

In addition, we considered the same data, only in multi-
ples of 10 and 100 times the above data vector, while hold-
ing the priors fixed. Results are given in table 2. Note that
the standard deviations for p, θ1, and θ2 decline substan-
tially as the sample size is increased, while those for η1 and
η2 do not.

112L � px1111 � θ12
x1211 � θ22

x21e�n5p� 11�θ12� 11�θ226

Simply stated, the screening data resulting from one or
two tests in the absence of a gold standard test for confir-
matory testing are insufficient to estimate all of the parame-
ters, even under the assumption of conditionally indepen-
dent tests. While the Bayesian approach takes advantage of
any current scientific knowledge about the accuracies of the
tests and the prevalence of the population, Bayesian infer-
ences for this problem will not generally converge to the
“true” values regardless of how large is the sample size n.

AN ALTERNATIVE DESIGN USING TWO TESTS AND
TWO POPULATIONS

The identifiability problem can be overcome by sampling
from a second population with a different prevalence and
then testing persons with both tests. Following the method
of Hui and Walter (2), we assume that the tests have the
same accuracy rates in both populations with respective
prevalences p1 and p2. The data are presented as the 2 × 2
× 2 table of counts {xijk}, as exemplified in table 3, with the
first subscript, i, denoting the outcome of T1, the second sub-
script, j, denoting the outcome of T2, and the third subscript,
k, denoting the population. There are now six independent
cells and six parameters, so under the conditional indepen-
dence assumption, the identifiability problem no longer
exists.

We illustrate the method assuming independent beta pri-
ors for the parameters. Details of the appropriate Gibbs sam-
pling approach are given in the Appendix. We consider an
augmented data set where the sample from population 1 is
the Strongyloides infection data analyzed by Joseph et al.
(1), and an additional sample is constructed that is presumed
to be from a second population. These data are given in table
3. To construct data from population 2, we first selected 
n2 � 201. We then assumed that the data were generated
from a model where the observed cell relative frequencies,
xij2/n2, were approximately equal to their corresponding
expectations; for example, x112/n2 p2η1η2 � (1 – p2)
(1 – θ1)(1 – θ2), and so on. We considered the collection of
all possible parameter vectors (p1, p2, η1, η2, θ1, θ2) satis-
fying these four constraints and chose the vector (0.4, 0.65,
0.955, 0.607, 0.351, 0.993). These values were chosen
specifically so that they would not cohere with the informa-
tion used by Joseph et al. (1). We then selected the second
population data to fit as closely as possible to the given
choice of parameters.

�

TABLE 1. Two-test one-population screening data array
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TABLE 2. Posterior means and standard deviations (in parentheses) for the low prevalence/high
accuracy data (presented in the section, Two Tests, One Population) for sample sizes 1, 10, and 100
times the data

200
2,000

20,000

0.017 (0.0099)
0.013 (0.0037)
0.013 (0.0023)

Sample
size
(no.)

π [0.01]* η
1

[0.9] θ
1

[0.99]

0.896 (0.091)
0.889 (0.096)
0.884 (0.094)

0.896 (0.091)
0.895 (0.092)
0.903 (0.083)

0.987 (0.0084)
0.991 (0.0027)
0.991 (0.0015)

* Numbers in brackets, the true value of the parameter.

θ
2

[0.99]η
2

[0.9]

0.987 (0.0084)
0.991 (0.0027)
0.991 (0.0015)
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To illustrate the role of the prior distribution, we analyzed
the data using the prior from Joseph et al. (1), with a
Uniform prior for p2, and also with a prior that coheres with
the data; for example, p1 ∼ beta(4, 6), η1 ∼ beta(19, 1), θ1 ∼
beta(4, 6), p2 ∼ beta(7, 3), η2 ∼ beta(6, 4), θ2 ∼ beta(99, 1).
In both cases we considered increased sample sizes keeping
the relative proportions, xijk/nk, constant for the selected
sample sizes. The results in table 4 show that, when the prior
conforms with the data (cases 4 and 5), the estimates con-
verge faster to their true values than when the prior knowl-
edge fails to conform with it. In either case, the effect of the
prior diminishes as n → (compare with Gelman et al.
(9)).

DISCUSSION AND CONCLUSIONS

We have illustrated how Bayesian inferences based on
single population data for the prevalence and accuracies of
two screening tests may be imprecise regardless of the sam-
ple size. This problem inevitably arises in nonidentifiable
situations.

We showed that this problem is eliminated when one can
apply the tests to two populations with different prevalences.
Provided that the assumptions of the Hui-Walter (2) paradigm
are satisfied, the Bayesian inferences will be consistent; that
is, estimates will converge to the true values of the underlying
parameters even when the prior information turns out not to
be in good agreement with the observed data.

We also considered a large sample approach via the expec-
tation-maximization algorithm (compare with Dempster et
al. (10)). The expectation-maximization algorithm was used
to obtain the posterior mode. This method is somewhat sim-
pler to implement and is more stable when sample sizes are
large. Thus, it would be preferred to the Gibbs sampling
approach in this instance. See Singer et al. (11) for details on

q

maximum likelihood estimation via the expectation-maxi-
mization algorithm in the Hui-Walter model. To make inter-
val inferences, a method of obtaining standard errors is
required (8). This involves obtaining the inverse of minus
second derivative matrix of the log posterior evaluated at the
mode. With Uniform priors, this is equivalent to obtaining
the Fisher observed information, which would be obtained in
the context of standard large sample maximum likelihood
estimation.

The problems described in the single-population setting
are due to the lack of identifiability that affects both fre-
quentist and Bayesian inference. The utility of the Bayesian
method as a partial resolution to the one population problem
depends on the quality of available prior information,
because reliable and accurate prior information in conjunc-
tion with good data can only improve inferences.
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APPENDIX 1

Low Prevalence High Accuracy

The likelihood, L, for our observed data is

We make the assumptions where are positive, as in Johnson and Gastwirth
(6). These assumptions are completely analagous to those made in the usual Poisson approximation to the binomial; see, for
example, p. 195 of Larsen and Marx (12). So we see that and that the assumptions imply that we are assuming p to
be small and the sensitivities and specificities to be near one with large n. The likelihood simplifies to expression 1, where we
note that x22 behaves like n in large samples.

APPENDIX 2

The Gibbs Sampler for the Hui-Walter Model

We use the notation ‘.’ to indicate various subtotals. For example, x
1
.. denotes the total number of positive outcomes on test

1, x..k � nk for k � 1, 2 denotes the two population sample sizes, and so on.
The missing or latent data are the 2 × 2 × 2 table of counts for those persons who are D’s, for example, {zijk}. Given the

observed counts {xijk}, the table of missing counts consists of independently distributed binomial variates with zijk {xijk} ∼
Bin(xijk,pijk), where pijk is the conditional probability of being a D given the person is from row i, column j, and population k.
For example, using Bayes theorem,

compare with Brookmeyer and Gall (13) and Gastwirth (14). Furthermore, the posterior distribution of the parameters, given
the data {xijk} and the missing data {zijk}, is the product of independent beta posteriors for each parameter. For example, the
augmented data posterior for pk is beta(apk � z..k, bpk � nk – z..k); the corresponding distributions for η1 and η2 are beta(aη1
� z1.., bη1 � z2..) and beta(aη2 � z.1., bη2 � z.2.), respectively; and for θ1 and θ2, they are beta(aθ1 � y2.. – z2.., bθ1 � y1.. –
z1..) and beta(aθ2 � y.2. – z.2., bθ2 � y.1. – z.1.).

Thus, given starting values for the parameters, one can alternately sample from these two sets of distributions to obtain a
Gibbs sample from the joint distribution.

p111 � pr1D 0 � � , population 12 �
p1η1η2

p1η1η2 � 11 � p12 11 � θ12 11 � θ22
;

0

p~ � np

p~, η~, θ~p � p~>n, ηi � 1 � η~i>n, θi � 1 � θ~i>n,

5p11 � η12η2 � 11 � p2θ111 � θ22 6
x215p11 � η12 11 � η22 � 11 � p2θ1θ26

x22.

5pη1η2 � 11 � p2 11 � θ12 11 � θ22 6
x115pη111 � η22 � 11 � p2 11 � θ12θ26

x12 �


